𝒪-operators on associative algebras and associative Yang–Baxter equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-operators on Associative Algebras and Associative Yang-baxter Equations

We introduce the concept of an extended O-operator that generalizes the wellknown concept of a Rota-Baxter operator. We study the associative products coming from these operators and establish the relationship between extended O-operators and the associative Yang-Baxter equation, extended associative Yang-Baxter equation and generalized Yang-Baxter equation.

متن کامل

Logarithmic intertwining operators and associative algebras

We establish an isomorphism between the space of logarithmic intertwining operators among suitable generalized modules for a vertex operator algebra and the space of homomorphisms between suitable modules for a generalization of Zhu’s algebra given by Dong-Li-Mason.

متن کامل

Integrable ODEs on Associative Algebras

In this paper we give definitions of basic concepts such as symmetries, first integrals, Hamilto-nian and recursion operators suitable for ordinary differential equations on associative algebras, and in particular for matrix differential equations. We choose existence of hierarchies of first integrals and/or symmetries as a criterion for integrability and justify it by examples. Using our compo...

متن کامل

ON STRONGLY ASSOCIATIVE HYPERRINGS

This paper generalizes the idea of strongly associative hyperoperation introduced in [7]  to the class of hyperrings. We introduce and investigate hyperrings of type 1, type 2 and SDIS. Moreover, we study some examples of these hyperrings and give a new kind of hyperrings called  totally hyperrings. Totally hyperrings give us a characterization of Krasner hyperrings. Also, we investigate these ...

متن کامل

WDVV Equations in Seiberg-Witten theory and associative algebras

1. What is WDVV. More than two years ago N.Seiberg and E.Witten [1] proposed a new way to deal with the low-energy effective actions of N = 2 four-dimensional supersymmetric gauge theories, both pure gauge theories (i.e. containing only vector supermultiplet) and those with matter hypermultiplets. Among other things, they have shown that the low-energy effective actions (the end-points of the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2012

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.2012.256.257